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ABSTRACT: Distribution theory for likelihood ratio statistics for

the comparison of several treatments with a control is dis-

cussed. These test statistics account for prior information

that the treatments are at least as effective as the control.

It is assumed that the sample sizes on the treatments are

(approximately) equal and the sample size on the control is at

least as large. Normal means are compared under the assump-

tion of a common variance, either known or unknown. The anal-

ogous problem for proportions is also considered.
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1. INTRODUCTION AND SUMMARY

We consider an experimental situation where one wishes to

compare several treatments with a control or standard. For

example, in a drug study, several drugs may be compared with a

zero dose control. In the absence of prior information about

the expected responses to these treatments one could use the

results of Dunnett (1955,1964). On the other hand, we consider

a situation where the investigator, because of known proper-

ties of the treatments, wishes to carry out a test making use

of prior information that all of the treatment means are at

least as large as the control mean. (The case in which all of

the treatment means are no larger than the control mean is

included by changing the signs of all the means.) Assuming

that the observations are normally distributed with common

variance c2, let H1 denote the hypothesis that p0 . Pi;

i =1,2,...,k where k is the number of treatments, p0 de-

notes the control mean and y i =1,2,...,k denote the treat-

ment means. The hypothesis, Hl, is a special type of order

restriction as discussed in Barlow, Bartholomew, Bremner and

Brunk (1972). The problem of testing homogeneity, H0 : 0 = "i;

i =l,2,.-,k when the alternative is restricted by a partial

order is discussed in Barlow et al. (1972) and the problem of

testing a partial order as a null hypothesis is discussed in

Robertson and Wegman (1978). The appropriate null hypothesis 4

distributions for the likelihood ratio test, in each of these .2"
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problems, are mixtures of standard distributions. The specific

form of the distribution depends upon whether H0 or the order
02

restriction is the null hypothesis and upon whether or not a

is assumed to be known. However, the mixing coefficients in

each case are the probabilities that the maximum likelihood

estimates, subject to the restriction, have a specified number

of distinct values. These probabilities depend upon the order

restriction and upon the sample sizes and they can be difficult,

if not impossible, to compute.

The partial order, H1, considered in this paper, is

termed a tree in Barlow et al. (1972). The mixing coefficients

can be obtained by numerically integrating their (3.38) and

using their recursive relation, (3.23), but this approach is

quite complicated for even moderate values of k. For the case

where the sample sizes are equal and the total number of means

does not exceed 12, the mixing coefficients are given in Table

A.6 in Barlow et al. It is quite common to have significantly

more observations on the control than on the treatments and we

borrow an idea from Chase (1974) to find a simple approximation

in this important case.

Williams (1971,1972) and Chase (1974) considered the case

in which the researcher is willing to assume not only that the

treatment means are greater than the control, but that the order-

ing among the treatment means is completely known. Thus the

order restriction on the k+l means is total. One application

they had in mind was the comparison of increasing dosage levels
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of a drug with zero dose control. We follow Chase's approach

and obtain approximate critical values for the tree ordering

with an increased sample size on the control. The limiting

values of the mixing constants are found as the sample size on

the control becomes infinite. The critical values based upon

these limiting constants and the critical values based upon

the equal-weights mixing constants are obtained. The approxi-

mate critical values are constructed by interpolating between

these two values. P-values are computed by interpolating be-

tween the P-values obtained from the equal weights and the

ones obtained from the limiting values.

Siskind (1976) and Grove (1980) observed that, for total

orders, the mixing constants are fairly robust to moderate vari-

ation in sample sizes. The same kind of robustness holds for

the tree partial order and so the results given in this paper

provide reasonable approximations even when the sample sizes on

the treatments are not exactly the same.

2. ONE-SIDED TESTS

In order to be specific, consider testing the hypothesis,

H0, against the alternative H1-H 0  (i.e., H 1 but not H 0 )

where H0 and H1 are specified in the previous section. The

data is obtained by choosing k+l independent random samples;

applying the control to one (of size n0 ) and a different

treatment to each of the remaining k samples (of sizes nl,

n 2,...,nk). Assume that the resulting sample means,
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We first consider the case in which a2 is known. The

likelihood ratio test (LRT) statistic is AvJIl

T = 2 lA=k n 2 Dist

where = =n i i=0n and are the max mum

likelihood estimates (MLEs) under the restriction H1 . Barlow

et al. (1972) discuss the computation of the restricted MLEs

for an arbitrary partial order. One algorithm that can be ap-

plied for any partial order is the minimum lower sets algorithm

and this algorithm takes a very simple form for our tree order-

ing. Of course, if X 0 X for i =l,2,...,k then I= XI

for i =0,1,2,...,k. Otherwise, arrange in increasing order

the treatment sample means (the control mean is not to be

included) and denote them by X(1 ) , X(2) s X (k)" Next,

find the smallest positive integer j for which

An = (n0Y + I()X())/(n0 + n(i)) < X( (1)j~lini 0J ~ i +l)

where the symbol n(1) is used to denote the sample size assoc-

iated with X(i)" Such an integer will exist unless

Ak_ 1  (k) and in this case set j = k. Now, ;A = A and

the restricted MLE for the treatment mean is either A or the
me antreatment sample~depending on whether the treatment sample mean

is included in i n or not. We illustrate the algo-
i=l wi) ai)

rithm with an example.
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Example. Suppose k = 3, n0 = 25, n I = n 2 = n3 = 10, X0 = 12.2,

X1 = 13.1, X 2 = 10.8 and X3 = 11.9. Since the sample means do

not satisfy the restrictions in H 1 we need to apply the algo-

rithm to obtain the restricted MLEs. Clearly X( 1 ) = 10.8,

X(2 ) = 11.9, X(3 ) = 13.1 and A1 = 11.8. Because A1 < X(2)'

j = 1 and i0 = P2 
= 11.8, "l = 13.1 and P3 11.9•

Returning to the test being considered and appealing to

Theorem 3.1 of Barlow et al. (1972), we see that

P[T0 1 /C2 c = _+1P( ,k+I)P[xl 1 kc] (2)

where 2 denotes a standard chi-squared variable with v
V

degrees freedom 2x 0 ) and P(l,k+l) is the probability,

under H0 , that P = ol1, .,iP) has exactly I distinct

values. The P(l,k+l) depend on the values of n0 ,nl,-..,nk.

In general, for k S 3 the P(l,k+l) can be obtained by the

explicit formulas discussed on page 146 of Barlow et al. (1972)

and for k , 4 they can be obtained by their recursive relation

(3.23) and repeated numerical integration of their (3.38). Even

for moderate k this may require several numerical integrations.

If no = n I = n 2 = . nk the values of P(X,k+l) are given

in Table A.6 of Barlow et al. (1972) for k - 11. If the sample

sizes are not all equal but do not vary dramatically (say the

ratio of the largest to the smallest is s 2) then the values

in Table A.6 provide a fairly reasonable approximation.

We are primarily interpsted in the case where the sample
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size for the control is significantly larger than the sample

sizes for the treatments. In the special case in which

n I  n2 = .= nk and n0 /n1 is a positive integer, the tables

in Ruben (1954) may be used to recursively generate the P(l,k+l)

(see the discussion on page 146 of Barlow et al. (1972)). Even

in this special case their computation may be very tedious so

that good approximations are of interest.

As was noted in the introduction, Chase (1974) found a

good approximation for the case where n0  is significantly

larger than ni; I =l,2,.--,k but when H, specified that

P0 S P 1 "." k" He assumed that n I = n2 =...= nk = n and

obtained the limiting critical values as w = n0/n -w -. An

interpolation between the equal weights critical values and

these limiting values worked very well for 1 1 w < -. We

employ an analogous approach for the tree ordering.

The P(2,k+l) are computed under H 0  and so they depend

only on the variances of the X i" Because the weights used in

pooling the sample means to obtain P are the reciprocals of

these variances, it is common to let P(l,k+l; w0 ,wl,--,wk)

denote the probability of exactly I distinct values in P

when V(X w- 1  for i =0,1,...,k.

Theorem 1. If 0 < w i < for I =1,2,-..,k then

P(A,k+l;e,wlW2 ,..,wk) = llm ?(.,k+l;wo,wl,w2 , -. ,wk) = 1)2 k ()

Proof: Intuitively, as w 0 -0 ' X becomes degenerate at



"0" In the pooling process, any time one of the treatment

means is amalgamated with X we place infinite weight on XO

so that the pooled value is equal to X Thus P(A,k+l;,wl,

,wk) is equal to the probability that exactly A-l of the

treatment means are not amalgamated with X0 (i.e., exactly

1-l of the treatment means exceed the common value of

p 0 , l,''', ) .  Thus, P(lk+l; ',w l ''''W k) = 2 - i

A more rigorous proof is obtained by induction. Obviously,

for k = 1, P(l,2;w 0 ,w1 ) = P(2,2;w 0,w I ) = 1/2 for all

0 < w0 ,w I <4. Assume the result is valid for k = m-I and

consider k = m. We use the representation for the P(I,k+l)

given in the recursive relation (3.23) in Barlow et al. (1972)

(which is valid for any partial order). First some notation is

needed. Let ;e be the collection of all partitions of.L,k+l

= 0,1,.. .,k] into nonempty sets BI,B 2 ,..,B, with the B

sets on which ± may be constant. For I r k, such decompo-

sitions are, with probability one, of the form B1 = (0) U A

where A c [1,2,..,k] with card(A) = k-1+l and B2 ,9.*.B

are singletons with U j =2B -- (1,2,..,k] -A. Also set

WBi = ZJEB wj and for Bi = i <J 2 
< .. <Jr 3  set

w(Bi) ,wJ2 ,w r). For 1 < I : m, (3.23) gives

P(B,m+l:w0 ,Wl,''iw
m  w

EL P(,t, :WB" .. "WB)P(l'card(Bl) :w(B1)"

Because card(B I m if I > 1, we take the limit as w 0 -- C,
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apply the induction hypothesis and note that card(z,m+I) =

(m-.+l) = (1-1)to obtain

P(.'m+l;',w...Wm) = (m)-i m for I=2..9m.

Next we note that by (3.38) of Barlow et al. (1972)

P(m+lm+l;woWl' 'Wm) = ={ .(Xi2)x)dx

where t(o) is the c.d.f. (p.d.f.) of a standard normal dis-

tribution and - wi/(W0 +W ) for i =l,2,..-,m. As w0 -

X --f* 0 and so P(m+l,m+l;w,w1 ,..,w m ) = 2-m and

p(l,m+l;,Wl$...,wm ) is found to be 2-
m  by subtraction. The

proof is completed.

Table 1 contains the a = .1,.05 and .01 critical values

for the statistic T0 1/o2 with w = n 0/n = 1,- and k =2,3,

.. ,0. The w = 1 values were obtained by using (2) with the

P(.A,k+l) given in the table in Barlow et al. and the w =

values are based on the P(l,k+l) given in Theorem 1. For

1 < w < - we recommend interpolating on 1/4. To give an

indication of the accuracy of this approximation the

P(l,k+l;w,l,..',l) were computed for k =2,3,5 and w =2,4.

The true significance level of the test at the approximate

C= .05 cutoff value (obtained from Table 1) was then computed.

The largest discrepancy for these six values was .0028.

...............................



Distribution theory for normal populations provides asymp-

totic theory under a variety of assumptions about the underly-

ing populations (cf. Theorem 4.5 in Robertson and Wegman and

Robertson (1978)). For example, one might want to compare the

treatments with the control by comparing the proportions of

individuals who exhibit a particular response to the stimuli.

Let p (P0 ) be the proportion of individuals in the popula-

tion of interest who will exhibit the given response when treat-

ment i (the control) is administered. We wish to test

H0 : P0 = p1 ... Pk vs. HI-H0  with H1 : p0 spi; i =l,2,'-,k.

If ,p denotes the sample proportion from a sample of size n

and if the samples are independent then the MLEs of the p i

subject to H I can be obtained from the algorithm for ti if

the Xi are replaced by pi" Let Pt; i =0,1,.--,k, denote

these restricted MLEs (cf. page 40 of Barlow et al. (1972)).

Following the arguments used to prove Theorem 4.5 and Corollary

4.6 in Robertson and Wegman (1978), we see that the LRT statis-

tic, -2 in A, is asymptotically equivalent to

T [ eI' n) as ni- - - with n/n 0

W E (0,-) for i =0,l,2,...,k, where p = w p le w
i=0 1 i 1

Furthermore, under the same assumptions on the sample sizes,

P[T I c] -- E ~ P(J,k+l)P[x -1 c]

01 J=1 1_

where the P(L,k+l) are computed with respect to the tree

ordc with -" .ghts wO,wl,...,wk. Thus T01  is a test statis-

tic tl," can be used for large sample sizes and if
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n I = n2 ... nk = n and n 0/n = w z 1 then Table 1 can be

used to obtain approximate critical values.

We now return to testing homogeneity of means versus the

tree alternative, but we assume the common variance is unknown.

The LRT is developed in Barlow et al. (1972) and for arbitrary

sample sizes, the test statistic is a monotone function of the

ratio of estimates of a2 under the two alternatives. Spe-

cifically,

S E n G1(X j ( )
S01 =o ki0 ii_) / i=0 =l(Xij - )

where the i are the restricted MLEs (computed using the algo-

rithm described earlier), a is the weighted sample mean (the

sample sizes are the weights) and the Xi are the actual

observations. Theorem 3.2 of Barlow et al. gives the null

hypothesis distribution of S01 as follows: for c k 0

P[S 0 1 >c] = k + l P(.,k+l)P[B(,_I)/2 (N-)/2 2c]

where Ba,b  denotes a Beta distribution with parameters a and
a~b k

b (Bob E 0), N = 0 ni and the P(X,k+l) are defined as

before. It is clear that nO -0 implies that N - which

in turn implies that the distribution of SO1 becomes degener-

ate at zero. However, So1  can be written as

i=O (e n where 2 is distributed

as 2 and is independent of the sample means and v = N-k-l.



Following Chase's work, we consider the distribution of the

statistic S 2 k - 2 -;) where Q
0 =O i=0p Q h

is fixed, independent of the sample means and Q - 2 X 2  (V is

now a fixed positive integer, free of N). The same arguments

used to show Theorem 3.2 in Barlow et al. give

P[S0 1 c] = =I P((k+I)P[BJ1 -I)/2,(k+v+l-A)/2 ac].

With v fixed, n I = n2 ... nk  and w = n0/n -

P[S* ztc] -4 2 [B((4)
0 1 =1 2- :(l)[B. )/2 (k++l..)/ 2 kc. ()

Table 2 contains the C = .05 and .01 critical values for

this limiting distribution of S0* with w = n0 /n =

k =2,3,.'',10 and v =2,4,6,8,10,12,14,16,18,20,30,50,100.

The values for w =1 were obtained by using the P(J,k+l) in

Appendix A.6 of Barlow et al. and those for w =- were obtained

by using (4). As in Chase's work, we recommend interpolating

on l/v, for 1 < w < - and on N 1 = (v+k+l)- 1 for inter-

mediate values of v.

In many applications of the above procedures the researcher

is actually interested in finding evidence in favor of H 1

rather than in finding evidence against H Testing H0

against H1-H 0  allows one to control the probability of

falsely confirming H1* If one is more interested in control-

ling the probability of falsely rejecting H1 he also might

consider the test procedure developed in Robertson and Wegman
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(1978). They considered the likelihood ratio test where H1

is the null hypothesis. If a2 is known, the test statistic

is T 2 n A =  -X) Within HI, H0  is least

favorable and under H 0,

PT 1 2 +c] P(Yk+l)P[X+l zC].P[T2 + I =i

Clearly, if nl,n 2 ,- ,nk are fixed and no -- then

2 ' k+l{k) 2 k ]

1k2k PC2+_2 z Q(5)1[T2 .1= 1- (1l-l1)/ (

The equal weights critical values (taken from Robertson and

Wegman (1978)) and the critical values for no = O (computed

from (5)) are given in Table 3. Again we recommend interpola-

tion on (n0/n1 )-1/2 when n1 = n2 - ... = nk  and n 0  n.

If the common variance, a2, is unknown then the likeli-

hood ratio statistic, for testing H1  against -H 1 , is given

by

L =0 ni (i-2i)

S12 =k k 1- 2 1 2
Ek n (5X _P ) + vs

and the appropriate null hypothesis distribution (computed under

H0) is

Ps 2+c] +p1 , ,k+l)P[B
P1S2 ac] = --1 (k+l-j-)/2,(N-k-l)/2 kc].

We have the same difficulty we had in testing H 0  vs. HI-H0,

-. ... ' .
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in that the distribution becomes degenerate as no  (and thus

N) gets large. We adopt an analogous remedy by fixing vS2

and then letting n0 /n I -- - with n I = n2  = nk. Under

these conditions we find that the appropriate probability is

2k +1 kl l)ac]. Again for intermediate

values of w = n0 /n I and v we recommend interpolation in

Table 4 on l/4 and on N- .

I
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vausofTI w forw =i,

=

TABLE 1. Critical values of T01/ 2  for w 1,0.

.1 .05 .01

k wV =1 w=l W= wCO V=V

2 3.275 2.953 4.577 4.231 7.672 7.283

3 4.696 4.010 6.171 5.433 9.561 8.740

4 6.036 4.955 7.654 6.500 11.295 10.020

5 7.333 5.836 9.075 7.481 12.939 11.180

6 8.600 6.672 1o.456 8.411 14.523 12.275

7 9.848 7.476 11.821 9.295 16.061 13.325

8 11.081 8.257 13.136 10.153 17.564 14.300

9 12.301 9.018 14.446 10.984 19.039 15.275

10 13.510 9.764 15.741 11.800 20.490 16.200
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TABLE 2. Critica2 values for S* for w = no i ,n.
01 0

w 2 3 4 5 6 7 8 9 10

2 0.05 1 .8779 .9033 .9172 .9265 .9333 .9385 .9426 .9460 .9490
.8511 .8550 .8501 .8425 .8340 .8257 .8171 .8091 .8018

1 .9727 .9775 .9800 .9817 .9829 .9839 .9849 .9854 .9861
0.01 " .9653 .9619 .9561 .9482 .9404 .9316 .9238 .9150 .9072

4 1 .6650 .7300 .7700 .7983 .8193 .8359 .8491 .8601 .8694

0.05 .6328 .6724 .6924 .7031 .7890 .7119 .7134 .7136 .7129

1 .8428 .8730 .8916 .9048 .9146 .9219 .9282 .9331 .9375
0.01 OD .8242 .8398 .8457 .8467 .8457 .8428 .8398 .8359 .8320

6 0.05 1 .5229 .5996 .6514 .6899 .7197 .7437 .7632 .7800 .7942
(a .4932 .5459 .5771 .5977 .6123 .6226 .6301 .6357 .6401

1 .7129 .7617 .7930 .8714 .8350 .8496 .8613 .8711 .8794
0.01 .6914 .7227 .7402 .7510 .7568 .7607 .7627 .7637 .7637

8 1 .4287 .5059 .5610 .6040 .6382 .6663 .6899 .7102 .7278
0.05 C .4023 .4570 .4927, .5181 .5371 .5518 .5630 .5723 .5796

1 .6094 .6670 .7070 .7373 .7607 .7803 .7969 .8105 .8223
0.01 . .5898 .6289 .6533 .6699 .6816 .6895 .6953 .7002 .7041

10 1 .3623 .4365 .4917 .5356 .5718 .6021 .6279 .6504 .6699
0.05 C .3389 .3926 .4292 .4565 .4778 .4946 .5083 .5198 .5293

1 .5303 .5898 .6348 .6680 .6953 .7187 .7383 .7549 .7686
0.01 . .5117 .5547 .5820 .6025 .6172 .6289 .6387 .6455 .6514

12 1 .3132 .3833 .4370 .4805 .5171 .5483 .5752 .5991 .6199
0.05 c .2925 .3437 .3799 .4077 .4299 .4480 .4631 .4758 .4868

1 .4687 .5293 .5742 .6094 .6387 .6641 .6855 .7041 .7207

.4502 .4941 .5234 .5469 .5635 .5771 .5879 .5977 .6055

14 1 .2759 .3413 .3931 .4355 .4717 .5029 .5303 .5547 .5764
0.05 G .2573 .3054 .3408 .3682 .3906 .4092 .4250 .4385 .4502

1 .4180 .4775 .5234 .5596 .5898 .6162 .6387 .6592 .6768
0.01 m .4023 .4453 .4766 .5000 .5176 .5332 .5449 .5566 .5645

16 005 1 .2463 .3076 .3569 .3979 .4336 .4644 .4917 .5161 .5383
0 .2295 .2749 .3086 .3354 .3579 .3765 .3926 .4o65 .4189

1 .3779 .4355 .4805 .5166 .5479 .5742 .5977 .6191 .6377
00 .3633 .4o43 .4355 .4590 .4785 .4941 .5078 .5195 .5293

18 1 .2227 .2800 .3267 .3662 .4009 .4312 .4583 .4827 .5046

0.05 o .2073 .2498 .2822 .3o81 .3301 .3486 .3647 .3789 .3914

0.0 1 .3447 .4004 .4434 .4795 .5107 .5381 .5615 .5830 .6016
0.0 .3301 .3711 .0o14 .4258 .4453 .4609 .4756 .4873 .498o
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TABLE 2 (cont.)

kV v 2 4 6 8 10

20 1 .2029 .2568 .3013 .3394 .3726 .4023 .4290 .4529 .4749
0.05 .1887 .2288 .2598 .2849 .3062 .3245 .3406 .3547 .3672

0.01 1 .3164 .3691 .4121 .4473 .4785 .5049 .5293 .5508 .5703
.3027 .3428 .3721 .3955 .416o .4316 .4463 .4590 .4697

30 0.05 1 .1406 .1816 .2166 .2476 .2754 .3008 .3242 .3459 .3661
.1306 .1611 .1858 .2065 .2249 .2410 .2554 .2686 .2805

1 .2246 .2676 .3027 .3340 .3613 .3867 .4092 .4297 .4487
0.01 a .2148 .2471 .2725 .2930 .3115 .3271 .3418 .3545 .3652

50 1 .0872 .1144 .1384 .1603 .1807 .1996 .2175 .2344 .2504
0.05 w .0808 .1012 .1183 .1332 .1466 .1588 .1702 .1805 .1904

1 .1416 .1719 .1973 .2207 .2422 .2617 .2803 .2969 .3135
0.01 C .1353 .1582 .1768 .1924 .2070 .2197 .2314 .2422 .2524

100 1 .0447 .0594 .0727 .0851 .0969 .1083 .1190 .1295 .1396
0.05 .0413 .0524 .0620 .0704 .0784 .0857 .0926 .0991 .1055

1 .0737 .0906 .1055 .1191 .1323 .1145 .1563 .1670 .17770.01 c .0703 .0830 .0938 .1035 .1123 .1206 .1282 .1353 .1421

1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00000.05 C .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

FF
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TABLE 3. Critical values of T 1C for w = 1

a
.1 .05 .01

k w=l w= w=w wl w = O

2 2.5796 2.953 3.8232 4.231 6.8203 7.283

3 3.1992 4.OlO 4.5469 5.433 7.7344 8.740

4 3.6658 4.955 5.0830 6.500 8.4082 10.020

5 4.o474 5.836 5.5283 7.481 8.9648 11.180

6 4.3630 6.672 5.8909 8.411 9.3926 12.275

7 4.6406 7.476 6.2109 9.295 9.7969 13.325

8 4.8845 8.257 6.4863 10.153 10.1250 14.300

9 5.1013 9.018 6.7383 10.984 10.4297 15.275

10 5.3013 9.764 6.9609 11.800 10.7314 16.200
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TABLE 4.

v a 2 3 4 5- 6 7 8 9 10

2 1 .8823 .9087 .9229 .9319 .9380 .9429 .9463 .9492 .9517
0.05 .9013 .9333 .9497 .9596 .9662 .9710 .9746 .9774 .9796

0 1 .9761 .9817 .9846 .9863 .9878 .9885 .9893 .9900 .9905
0.01 .9801 .9867 .9900 .9920 .9933 .9943 .9950 .9955 .9960

4 1 .6387 .6860' .7192 .7402 .7559 .(683 .7783 .7866 .7935
0.05 .6714 .7406 .7839 .8141 .8365 .8540 .8680 .8794 .8890

1 .834o uo-94  .8750 .8848 .8926 .8984 .9023 .9062 .9102
0.01 .8506 .'43 .9o47 .9187 .9289 .9368 .9430 .9481 .9524

6 1 .4858 .5371 .5708 .5947 .6133 .6279 .64Ol .6504 .6592
0.05 O .5182 .5934 .6450 .6836 .7139 .7385 .7590 .7763 .7912

1 .6914 .7285 .7500 .7656 .7773 .7871 .7939 .8008 .8066
0.01 .7138 .7631 .7958 .8197 .8381 .8529 .8650 .8752 .8839

8 1 .3896 .4375 .4697 .4932 .5117 .5264 .5391 .5498 .5591
0.05 .419o .4911 .5432 .5839 .6169 .6445 .6680 .6884 .7062

1 .584o .6211 .6465 .6641 .6777 .6895 .6992 .7070 .7129
0.01 .6062 .6611 .6995 .7288 .7521 .7714 .787r .8o14 .8135

10 1 .3247 .3682 .3979 .4199 .4375 .4521 .4644 .4746 .4839
0.05 .3509 .4177 .4677 .5078 .5412 .5696 .5943 .616o .6352

1 .5020 .5410 .5654 .584o .5977 .6o94 .6201 .6289 .6357
0.01 .524o .5797 .6202 .6519 .6778 .6995 .7182 .7344 .7487

12 1 .2778 .3174 .3447 .3655 .3818 .3955 .4072 .4175 .4263
0.05 o .306 .3629 .41o .4486 .4812 .5094 .5342 .5563 .5761

1 .4395 .4766 .5010 .5195 .5332 .5459 .5557 .5645 .5723
0.01 o .4603 .5147 .5553 .5878 .6148 .6378 .6578 .6754 .6911

14 1 .2427 .2788 .3042 .3232 .3389 .3516 .3623 .3721 .3804
0.05 .2642 .3207 .3648 .4014 .4328 .4603 .4847 .5066 .5265

1 .3906 .4258 .4492 .4668 .4805 .4922 .5029 .5117 .5195
0.01 o .4099 .4622 .5020 .5343 .5615 .5850 .6057 .6242 .64o4

16 1 .2156 .2485 .2720 .2896 .3042 .3162 .3264 .3354 .3433

0.05 .2351 .2871 .3284 .3630 .3930 .4195 .4433 .4648 .4844

1 .3516 .3838 .4062 .4238 .4375 .4492 .4590 .4668 .47460.01 co.3692 .4191 .4576 .4893 .5162 .5397 .5605 .5792 .596o

18 .1938 .2241 .2456 .2622 .2759 .2871 .2969 .3052 .3127
0.05 .2117 .2599 .2985 .3313 .3599 .3853 .4083 .4292 .1484

1 .3184 .3496 .3711 .3877 .4014 .4121 .4219 .4297 .4365
0.01 .3358 .3831 .4201 .4509 .4774 .5006 .5213 .5400 .5569
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TABLE 4 (cont.)

v O k 2 3 4 5 6 7 8 9 10

20 1 .176o .2O41 .2241 .2397 .2524 .2629 .2720 .2800 .2871
0.05 C .1925 .2373 .2736 .3o45 .3318 .3562 .3783 .3985 .4172

1 .2920 .3213 .3418 .3574 .3701 .3809 .3896 .3975 .o43

0.01 O .3078 .3527 .3882 .418o .4437 .4665 .4869 .5054 .5223

30 1 .12o6 .14O9 .1558 .1674 .1769 .1851 .1919 .1980 .2036
0.05 C .1324 .1654 .1928 .2168 .2383 .2580 .2762 .2932 .3091

0.01 1 .2051 .2275 .2432 .2559 .2666 .2754 .2822 .2891 .2949
o o .2169 .2521 .2807 .3054 .3273 .3471 .3651 .3818 .3973

50 1 .o74o .0870 .0967 .1042 .11o6 .116o .12o6 .1248 .1285
0.05 w .0815 .1029 .1211 .1374 .1523 .1661 .1791 .1914 .2031

1 .1279 .1436 .1543 .1631 .1704 .1768 .1816 .1865 .1904
0.01 C .1361 .1601 .1802 .1979 .2139 .2287 .2424 .2553 .2675

100 1 .0376 .o444 .0496 .0536 .0571 .0599 .0625 .o648 .o699

0.05 G .o145 .0529 .0627 .0716 .0799 .0878 .0952 .1024 .1092
1 .0662 .0745 .0806 .0854 .0894 .0928 .0959 .0986 .1011

0.01 d .0704 .0836 .0950 .1051 .1144 .1232 .131 .1393 .1468

O 1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
0.05 G .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
0.01 O .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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